Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Biota Neotrop. (Online, Ed. ingl.) ; 17(3): e20170337, 2017. tab, graf
Article in English | LILACS | ID: biblio-951119

ABSTRACT

Abstract Filamentous fungi are widely diverse and ubiquitous organisms. Such biodiversity is barely known, making room for a great potential still to be discovered, especially in tropical environments - which are favorable to growth and species variety. Filamentous fungi are extensively applied to the production of industrial enzymes, such as the amylases. This class of enzymes acts in the hydrolysis of starch to glucose or maltooligosaccharides. In this work twenty-five filamentous fungi were isolated from samples of decomposing material collected in the Brazilian Atlantic Forest. The two best amylase producers were identified as Aspergillus brasiliensis and Rhizopus oryzae. Both are mesophilic, they grow well in organic nitrogen-rich media produce great amounts of glucoamylases. The enzymes of A. brasiliensis and R. oryzae are different, possibly because of their phylogenetical distance. The best amylase production of A. brasiliensis occurred during 120 hours with initial pH of 7.5; it had a better activity in the pH range of 3.5-5.0 and at 60-75°C. Both fungal glucoamylase had wide pH stability (3-8) and were activated by Mn2+. R. oryzae best production occurred in 96 hours and at pH 6.5. Its amylases had a greater activity in the pH range of 4.0-5.5 and temperature at 50-65ºC. The most significant difference between the enzymes produced by both fungi is the resistance to thermal denaturation: A. brasiliensis glucoamylase had a T50 of 60 minutes at 70ºC. The R. oryzae glucoamylase only had a residual activity when incubated at 50°C with a 12 min T50.


Resumo Fungos filamentosos são organismos amplamente diversificados e ubíquos. Esta biodiversidade ainda é pouco caracterizada, desta forma, há um grande potencial a ser descoberto, sobretudo em biomas tropicais, que favorecem o crescimento e diversificação de espécies. Fungos filamentosos são extensivamente utilizados para a produção industrial de enzimas, como as amilases. Esta classe de enzimas atua na hidrólise do amido em glicose ou maltooligossacarídeos. Neste trabalho 25 cepas de fungos filamentosos foram isoladas a partir de amostras de material em decomposição coletados na Mata Atlântica Brasileira. As duas cepas que produziram mais amilases foram identificadas como Aspergillus brasiliensis e Rhizopus oryzae. Ambos os fungos são mesofílicos, crescem bem em meio de cultivo rico em nitrogênio orgânico, e produziram grande quantidade de glucoamilase. As enzimas de A. brasiliensis e R. oryzae possuem características distintas, possivelmente devido à distância filogenética das espécies. A produção de amilase mais expressiva de A. brasiliensis ocorreu em 120 horas de cultivo e pH inicial de 7,5; possui maior atividade em temperaturas entre 60-75ºC e pH entre 3,5-5,0. Ambas glucoamilases fúngicas obtiveram ampla estabilidade de pH (3-8) e foram ativadas por Mn2+. A melhor produção de R. oryzae ocorreu em 96 horas de cultivo e pH 6,5. Suas amilases são mais ativas na faixa de pH de 4,0-5,5 e temperatura entre 50-60ºC. A diferença mais significativa dentre as enzimas produzidas pelos fungos selecionados é a resistência à desnaturação térmica, tendo a glucoamilase de A. brasiliensis um T50 de 60 minutos a 70ºC, já a glucoamilase de R. oryzae somente obteve atividade residual quando incubada a 50°C, com um T50 de apenas 12 minutos.

2.
Electron. j. biotechnol ; 18(6): 464-470, Nov. 2015. ilus, graf, tab
Article in English | LILACS | ID: lil-772292

ABSTRACT

Background Tannases are enzymes with biotechnological potential produced mainly by microorganisms as filamentous fungi. In this context, the production and characterization of a multi-tolerant tannase from Aspergillus carbonarius is described. Results The filamentous fungus A. carbonarius produced high levels of tannase when cultivated under solid-state fermentation using green tea leaves as substrate/carbon source and tap water at a 1:1 ratio as the moisture agent for 72 h at 30°C. Two tannase activity peaks were obtained during the purification step using DEAE-Cellulose. The second peak (peak II) was purified 11-fold with 14% recovery from a Sepharose CL-6B chromatographic column. The tannase from peak II (tannase II) was characterized as a heterodimeric glycoprotein of 134.89 kDa, estimated through gel filtration, with subunits of 65 kDa and 100 kDa, estimated through SDS-PAGE, and 48% carbohydrate content. The optimal temperature and pH for tannase II activity was 60°C and 5.0, respectively. The enzyme was fully stable at temperatures ranging from 20-60°C for 120 min, and the half-life (T1/2) at 75°C was 62 min. The activation energy was 28.93 kJ/mol. After incubation at pH 5.0 for 60 min, 75% of the enzyme activity was maintained. However, enzyme activity was increased in the presence of AgNO3 and it was tolerant to solvents and detergents. Tannase II exhibited a better affinity for methyl gallate (Km = 1.42 mM) rather than for tannic acid (Km = 2.2 mM). Conclusion A. carbonarius tannase presented interesting properties as, for example, multi-tolerance, which highlight its potential for future application.


Subject(s)
Aspergillus/enzymology , Carboxylic Ester Hydrolases/biosynthesis , Fermentation , Temperature , Kinetics , Hydrogen-Ion Concentration
3.
Braz. j. microbiol ; 45(4): 1459-1467, Oct.-Dec. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-741301

ABSTRACT

Plant cell wall is mainly composed by cellulose, hemicellulose and lignin. The heterogeneous structure and composition of the hemicellulose are key impediments to its depolymerization and subsequent use in fermentation processes. Thus, this study aimed to perform a screening of thermophilic and thermotolerant filamentous fungi collected from different regions of the São Paulo state, and analyze the production of β-xylosidase and arabinanase at different temperatures. These enzymes are important to cell wall degradation and synthesis of end products as xylose and arabinose, respectively, which are significant sugars to fermentation and ethanol production. A total of 12 fungal species were analyzed and 9 of them grew at 45 ºC, suggesting a thermophilic or thermotolerant character. Additionally Aspergillus thermomutatus anamorph of Neosartorya and A. parasiticus grew at 50 ºC. Aspergillus niger and Aspergillus thermomutatus were the filamentous fungi with the most expressive production of β-xylosidase and arabinanase, respectively. In general for most of the tested microorganisms, β-xylosidase and arabinanase activities from mycelial extract (intracellular form) were higher in cultures grown at high temperatures (35-40 ºC), while the correspondent extracellular activities were favorably secreted from cultures at 30 ºC. This study contributes to catalogue isolated fungi of the state of São Paulo, and these findings could be promising sources for thermophilic and thermotolerant microorganisms, which are industrially important due to their enzymes.


Subject(s)
Aspergillus niger/enzymology , Aspergillus niger/isolation & purification , Glycoside Hydrolases/analysis , Neosartorya/enzymology , Neosartorya/isolation & purification , Xylosidases/analysis , Aspergillus niger/growth & development , Aspergillus niger/radiation effects , Brazil , Mass Screening , Neosartorya/growth & development , Neosartorya/radiation effects , Temperature
4.
Electron. j. biotechnol ; 15(5): 4-4, Sept. 2012. ilus, tab
Article in English | LILACS | ID: lil-657663

ABSTRACT

Background: Tannases are enzymes that may be used in different industrial sectors as, for example, food and pharmaceutical. They are obtained mainly from microorganisms, as filamentous fungi. However, the diversity of fungi stays poorly explored for tannase production. In this article, Aspergillus ochraceus is presented as a new source of tannase with interesting features for biotechnological applications. Results: Extracellular tannase production was induced when the fungus was cultured in Khanna medium with tannic acid as carbon source. The extracellular tannase was purified 9-fold with 2 percent recovery and a single band corresponding to 85 kDa was observed in SDS-PAGE. The native apparent molecular mass was estimated as 112 kDa. Optima of temperature and pH were 40ºC and 5.0, respectively. The enzyme was fully stable from 40ºC to 60ºC during 1 hr. The activity was enhanced by Mn2+ (33-39 percent) and NH4+ (15 percent). The purified tannase hydrolyzed tannic acid and methyl gallate with Km of 0.76 mM and 0.72 mM, respectively, and Vmax of 0.92 U/mg protein and 0.68 U/mg protein, respectively. The analysis of a partial sequence of the tannase encoding gene showed an open read frame of 567 bp and a sequence of 199 amino acids were predicted. TLC analysis revealed the presence of gallic acid as a tannic acid hydrolysis product. Conclusion: The extracellular tannase produced by A. ochraceus showed distinctive characteristics such as monomeric structure and activation by Mn2+, suggesting a new kind of fungal tannases with biotechnological potential. Further, it was the first time that a partial gene sequence for A. ochraceus tannase was described.


Subject(s)
Aspergillus ochraceus/enzymology , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Electrophoresis , Fermentation , Hydrogen-Ion Concentration , Hydrolyzable Tannins , Polymerase Chain Reaction , Temperature
5.
Braz. j. microbiol ; 42(3): 1136-1140, July-Sept. 2011. ilus
Article in English | LILACS | ID: lil-607545

ABSTRACT

The effect of several nutritional and environmental parameters on Penicillium purpurogenum growth and sacharogenic amylase production was analyzed. High enzyme levels (68.2 U mg-1) were obtained with Khanna medium at initial pH 6.0, incubated at 30ºC for 144 hours. The optimum pH and temperature activities were 5.0 and 65ºC, respectively. The enzyme presented a half-life (t50) of 60 min, at 65ºC. Only glucose was detected after 24 hours of reaction using soluble starch as substrate.


Subject(s)
Amylases/analysis , Fermentation , Penicillium/enzymology , Enzyme Activation , Methods , Methods
6.
Electron. j. biotechnol ; 14(2): 2-2, Mar. 2011. ilus, tab
Article in English | LILACS | ID: lil-591932

ABSTRACT

The filamentous fungus A. phoenicis produced high levels of beta-D-fructofuranosidase (FFase) when grown for 72 hrs under Solid-State Fermentation (SSF), using soy bran moistened with tap water (1:0.5 w/v) as substrate/carbon source. Two isoforms (I and II) were obtained, and FFase II was purified 18-fold to apparent homogeneity with 14 percent recovery. The native molecular mass of the glycoprotein (12 percent of carbohydrate content) was 158.5 kDa with two subunits of 85 kDa estimated by SDS-PAGE. Optima of temperature and pH were 55ºC and 4.5. The enzyme was stable for more than 1 hr at 50ºC and was also stable in a pH range from 7.0 to 8.0. FFase II retained 80 percent of activity after storage at 4ºC by 200 hrs. Dichroism analysis showed the presence of random and beta-sheet structure. A. phoenicis FFase II was activated by Mn2+, Mg2+ and Co2+, and inhibited by Cu2+, Hg2+ and EDTA. The enzyme hydrolyzed sucrose, inulin and raffinose. Kd and Vmax values were 18 mM and 189 U/mg protein using sucrose as substrate.


Subject(s)
Aspergillus/enzymology , beta-Fructofuranosidase/metabolism , Enzyme Stability , Hydrogen-Ion Concentration , Hydrolysis , Industrial Microbiology , Kinetics , Substrates for Biological Treatment , Sucrose , Temperature , beta-Fructofuranosidase/isolation & purification
7.
Braz. arch. biol. technol ; 54(1): 141-148, Jan.-Feb. 2011. graf, tab
Article in English | LILACS | ID: lil-576770

ABSTRACT

Fungi collected from Brazilian soil and decomposing plants were screened for pectinase production. R. microsporus var. rhizopodiformis was the best producer and was selected to evaluate the pectic enzyme production under several nutritional and environmental conditions. The pectinase production was studied at 40ºC, under 28 carbon sources-supplemented medium. The inducer effect of several agro-industrial residues such as sugar cane bagasse, wheat flour and corncob on polygalacturonase (PG) activity was 4-, 3- and 2-fold higher than the control (pectin). In glucose-medium, a constitutive pectin lyase (PL) activity was detected. The results demonstrated that R. microsporus produced high levels of PG (57.7 U/mg) and PL (88.6 U/mg) in lemon peel-medium. PG had optimum temperature at 65 ºC and was totally stable at 55 ºC for 90 min. Half-life at 70 ºC was 68 min. These results suggested that the versatility of waste carbon sources utilization by R. microsporus, produce pectic enzymes, which could be useful to reduce production costs and environmental impacts related to the waste disposal.

8.
Braz. j. microbiol ; 40(3): 612-622, Sept. 2009.
Article in English | LILACS | ID: lil-522482

ABSTRACT

The filamentous fungus Aspergillus caespitosus was a good producer of intracellular and extracellular invertases under submerged (SbmF) or solid-state fermentation (SSF), using agroindustrial residues, such as wheat bran, as carbon source. The production of extracellular enzyme under SSF at 30ºC, for 72h, was enhanced using SR salt solution (1:1, w/v) to humidify the substrate. The extracellular activity under SSF using wheat bran was around 5.5-fold higher than that obtained in SbmF (Khanna medium) with the same carbon source. However, the production of enzyme with wheat bran plus oat meal was 2.2-fold higher than wheat bran isolated. The enzymatic production was affected by supplementation with nitrogen and phosphate sources. The addition of glucose in SbmF and SSF promoted the decreasing of extracellular activity, but the intracellular form obtained in SbmF was enhanced 3-5-fold. The invertase produced in SSF exhibited optimum temperature at 50ºC while the extraand intracellular enzymes produced in SbmF exhibited maximal activities at 60ºC. All enzymatic forms exhibited maximal activities at pH 4.0-6.0 and were stable up to 1 hour at 50ºC.


O fungo filamentoso Aspergillus caespitosus foi um bom produtor de invertases intracelular e extracelular em fermentação submersa (FSbm) ou em estado sólido (FES), usando resíduos agroindustriais como fonte de carbono, sendo que para ambas as condições de cultivo, a maior produtividade foi obtida empregandose farelo de trigo. A produção da forma extracelular em FES mantido a 30ºC, por 72 horas, foi aumentada usandose solução de sais SR (1:1, m/v) para umidificar o substrato, sendo aproximadamente 5,5 vezes maior se comparada a FSbm (Meio Khanna) com a mesma fonte de carbono. Entretanto, a mistura de farelo de trigo e farinha de aveia em FES levou a um aumento de 2,2 vezes na produção enzimática se comparada ao uso isolado do farelo de trigo. A produção enzimática, em ambas as condições de cultivo, foi afetada pela adição suplementar de fontes de nitrogênio e fosfato. A adição de glicose em FSbm e em FES promoveu a diminuição da enzima extracelular, mas favoreceu um acúmulo intracelular de 35 vezes maior. A temperatura ótima de atividade para as invertases produzidas em FES e em FSbm foi de 50ºC e 60ºC, respectivamente, sendo estáveis a 50ºC por mais de 60 minutos. Todas as formas enzimáticas apresentaram atividade máxima em uma faixa de pH de 4.0-6.0.

SELECTION OF CITATIONS
SEARCH DETAIL